Refinement of Connections I

Steven McLoon Department of Neuroscience University of Minnesota

Graduate School Discussion

Wednesday, Nov 28 11:00am (right after lecture) In Mayo 3-100

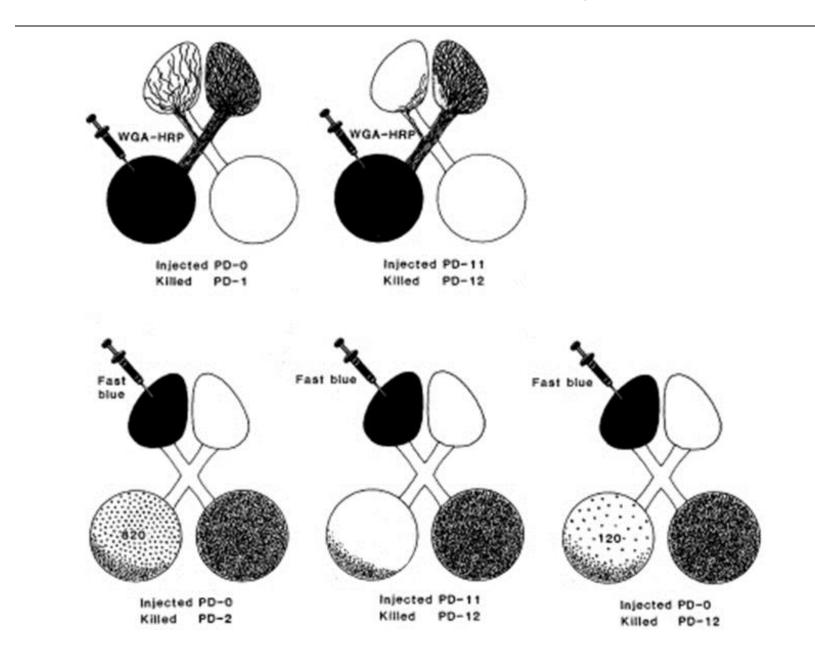
with Dr. Paul Mermelstein (invite your friends)

Coffee Hour

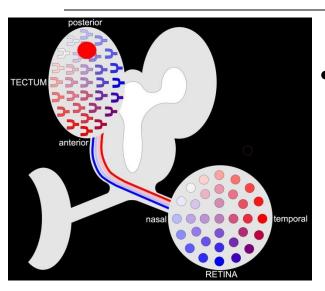
with Dr. Heilbronner (a new faculty member in neuroscience)

Tuesday (Nov 27) 10:00-11:00am Surdyk's Café in Northrop Auditorium

Stop by for a minute or an hour!


Course News

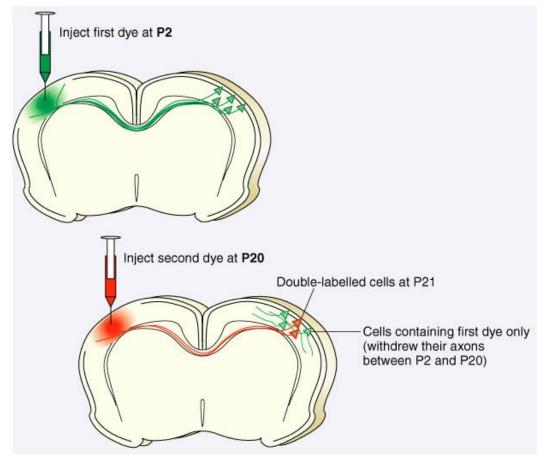
EVA	N 4	2								1	1															v		v																			
EXA	IVI	2							-														-		-	X		X																	_		_
_									_														_		-	X		Х																_	_		_
																										Х		Х																			
																										Х		Х																			
																							Х			Х		Х																			
																					Х		Х			Х		Х																			
																				Х	Х				X	Х	Х	Х																			_
																				Х	Х	Х	Х		Х	Х	Х	Х																			
																				х	Х	Х	Х	х	Х	Х	Х	х		Х																	
																			Х	Х	х	Х	Х	х	Х	Х	х	х		х																	
																	х		х	х	х	Х	Х	х	х	х	х	х		Х																	
															х		х	х	х	х	Х	Х	Х	х	х	Х	х	х		Х																	
													х		х	х	х	х	х	х	Х	Х	Х	х	х	Х	х	х		х		х															
				х			х	х	х	Х		х	х		х	х	х	х	х	х	х	Х	Х	х	х	х	х	х	х	х		х															
			<	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40															_
																							1																								
EXA	M	1+	EX	AM	2+	- DI	scι	ISSI	ON	1													MEA	N																							_
(out																																															_
											С													в															Α								_
								İ																	x			х																			
								İ																	x			х					х														
								İ																	x				х				х														_
								İ																	x			х	х			х	х	х	Х	х								-	-	-	
								İ									х						x		X		x						Х	X	Х				x	х				-	х	-	
								ļ –	-	х	-	-				х	X	x			-		X	x	X	-			X	x	x			X			х	x		X	x			\rightarrow	X	-	_
								l		X		х					X		x	-	Х	-				x				_										X		x		-	X		
х			х			x	х		-	X			х	x						x		x																		X			x	\rightarrow	x		Х
_	25	36	_	38	30	_	_		12	_	_	_		_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_					_		_	_	_	_	_	_	78	79	_	
`	55	50	57	50	59	40	41	42	43	44	43	40	47	40	49	50	51	52	55	54	55	50	57	50	59	00	01	02	1 05	04	05	00	07	00	09	70	/1	12	/3	/4	75	/0	//	70	19	50	0.
	_								-	-	-														-				_															_	-+	-+	
																									-			ſ	MEAI	N																+	


- Axon guidance and chemospecificity set up a rough pattern of connections between neurons and their target cells.
- Refinement improves the precision of the projection to that found in the adult via three simultaneous processes:
 - cell death
 - elimination of inappropriate connections
 - addition of appropriate connections (arborization of dendrites and axons)

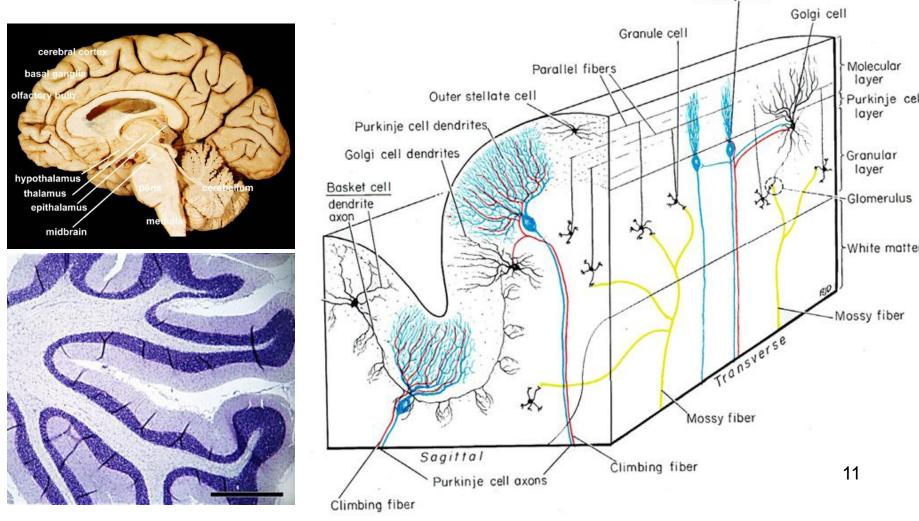
- Examples of transient axonal projections eliminated by refinement from the retina to:
 - the contralateral retina via the chiasm
 - the 'wrong' side of the brain
 - non-visual nuclei such as medial geniculate and VPL
 - the 'wrong' topographic positions within a visual nucleus


Loss of Ipsilateral Retinotectal Projections

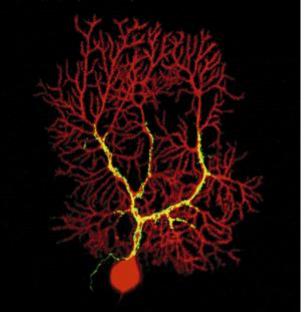
7



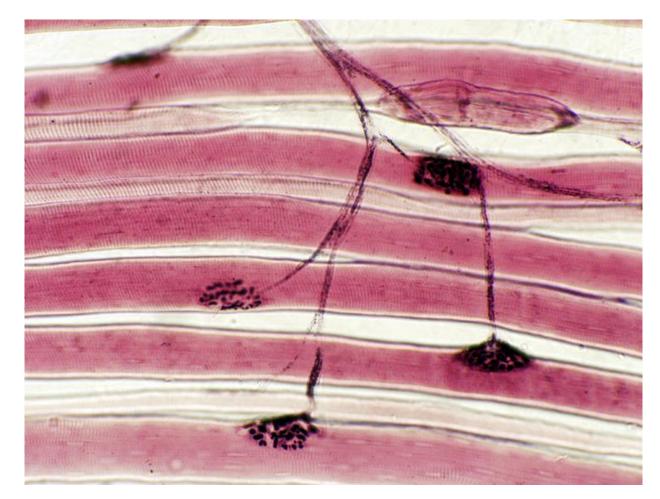
• Topographic precision in the retinotectal projection improves during development due to refinement processes.



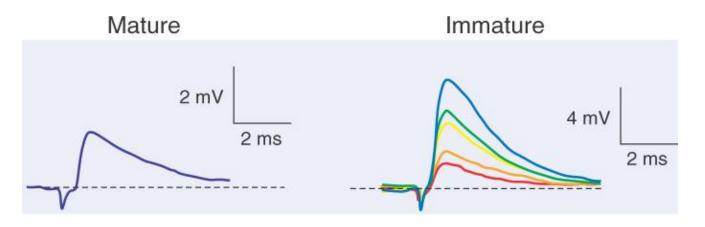
- Examples of transient axonal projections from the retina:
 - LGN neurons initially are innervated by >20 retinal ganglion cells each, compared to ~3 in the adult.
 - These transient projections are eliminated during a discrete period of development.
 - The total number of retinal synapses per LGN neuron increases during this refinement period.


• Some cortical areas have a transient collasal projection.

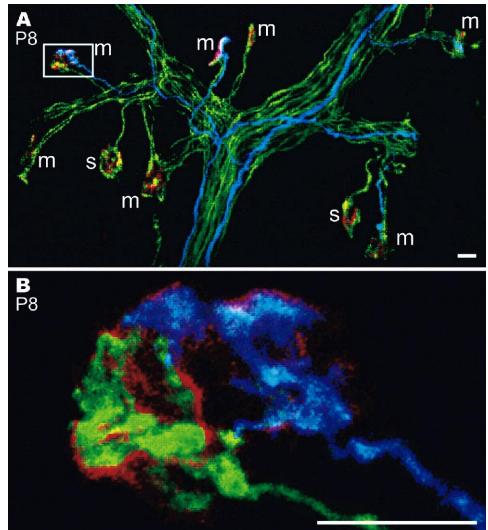
 Initially during development Purkinje cells receive multiple climbing fibers compared to a single climbing fiber in the adult.



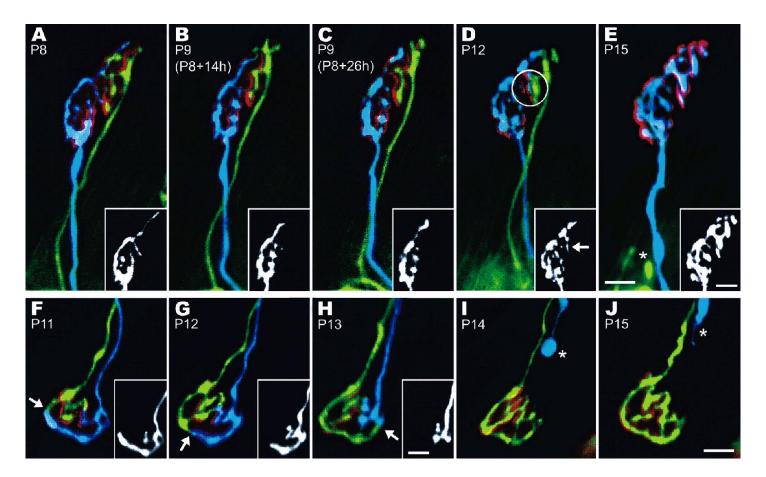
• Initially during development Purkinje cells receive multiple climbing fibers compared to a single climbing fiber in the adult.


climbing fiber terminal in green

• Each muscle fiber (myofiber) has only a single neuromuscular junction in the adult.

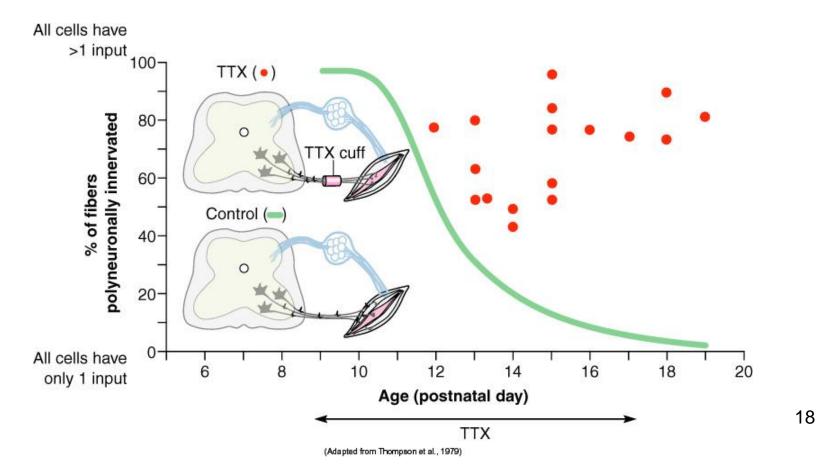

Transient projections can form functional synapses.

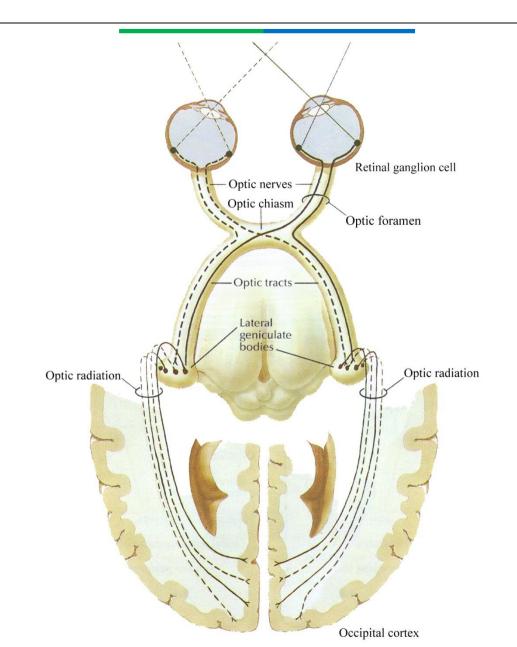
- Recording from a muscle fiber while stimulating its nerve showed transient polyneuronal innervation:
 - In adult animals, there was only one level of response in the muscle fiber regardless of the stimulus strength
 - In young animals, increased nerve stimulus strength (i.e. higher voltage) recruited more EPSP's in the muscle fiber.


Transient projections can form functional synapses.

• Loss of polyneuronal innervation in neuromuscular connections.

Transient projections can form functional synapses.

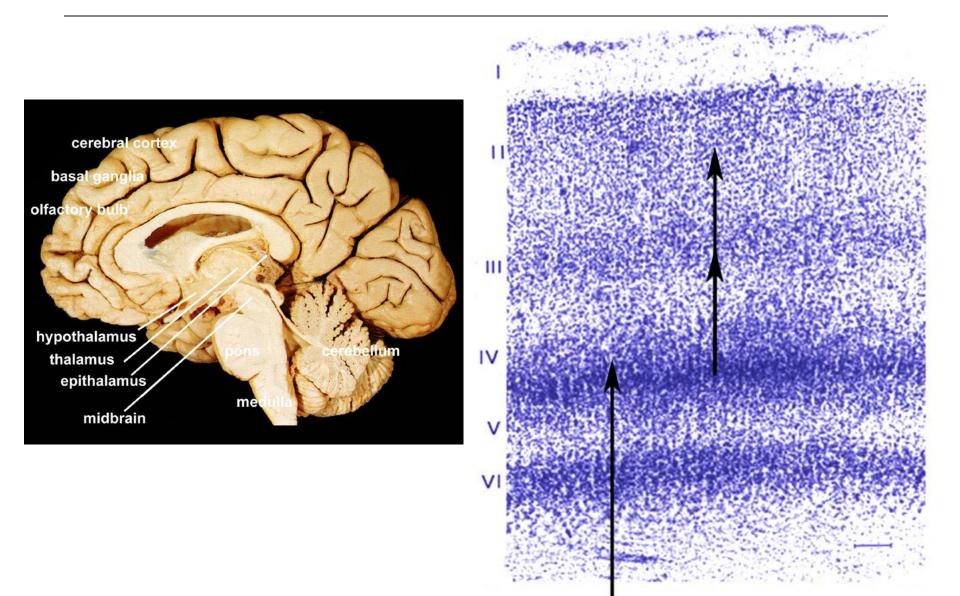

• Loss of polyneuronal innervation in neuromuscular connections.



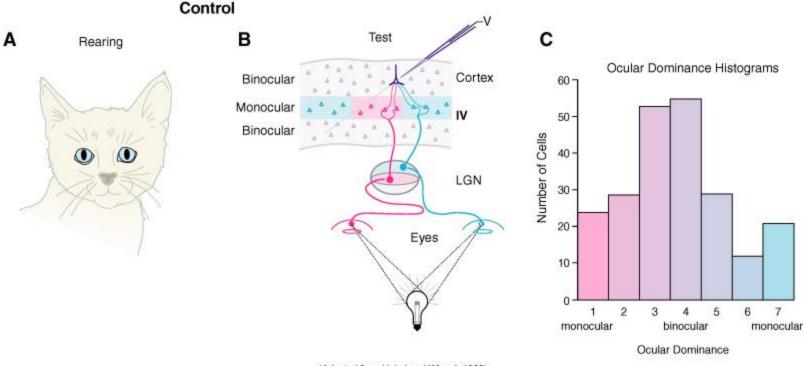
- In the neuromuscular system, there is a net loss in the number of synapses during refinement. However, the physical size of each synapse increases substantially.
- In many systems, some axonal branches and synapses are eliminated during refinement while others are added so that typically there is a net increase in the number of synapses.

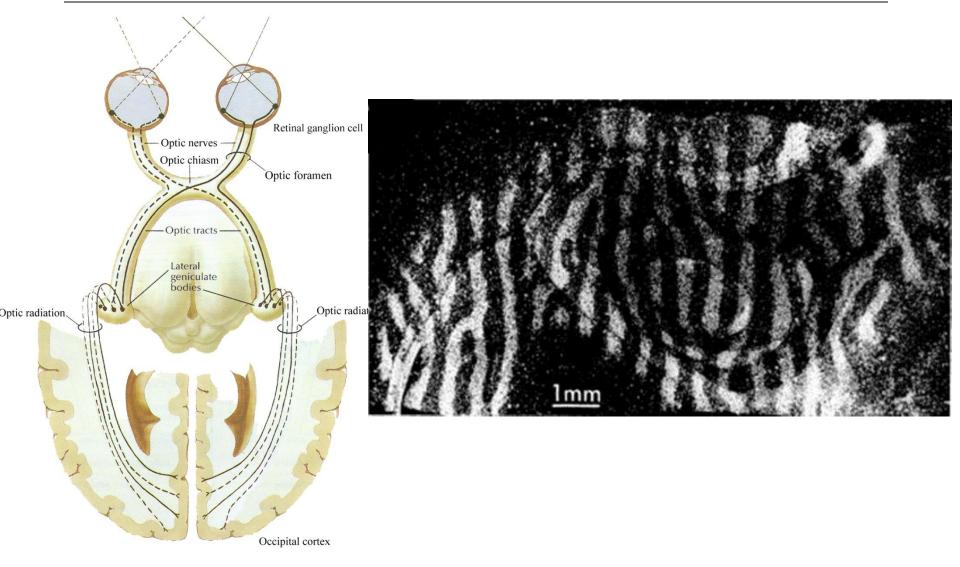
Refinement of connections is dependent on neuronal activity.

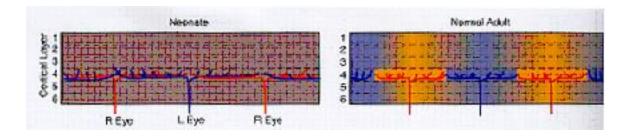
- Blocking motor neuron action potentials delays elimination of polyneuronal innervation of muscle.
- Increasing activity can accelerate loss of polyneuronal innervation.



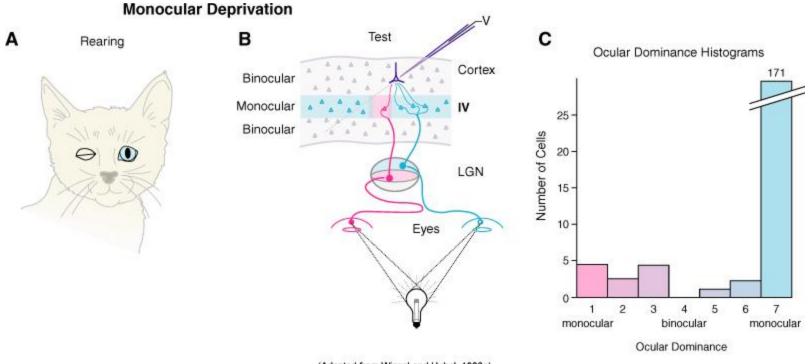
optic nerve optic chiasm optic tract

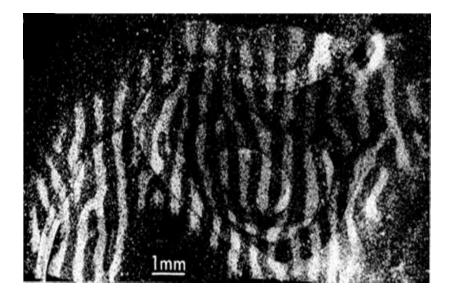

> lateral geniculate nuc, optic radiation

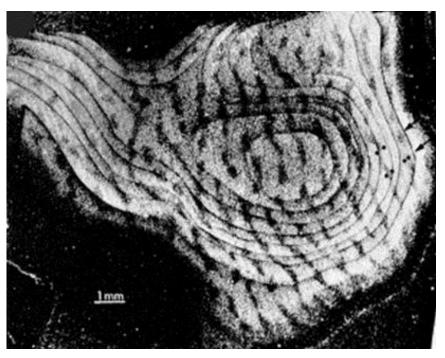

> > visual cortex

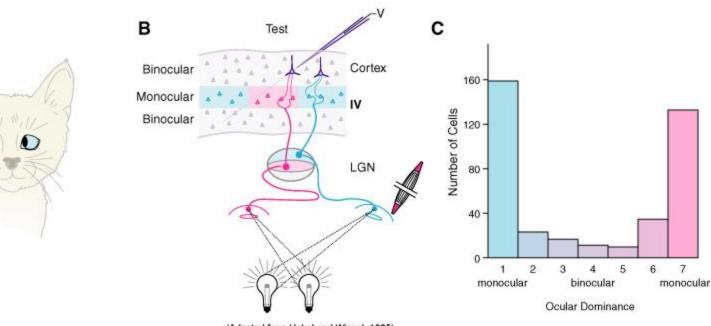

thalamus

- In adult cat, the projection from the lateral geniculate nucleus to layer IV of visual cortex is segregated into alternating stripes subserving the output from each eye (ocular dominance columns / stripes).
- Cells in the other cortical layers are binocular.



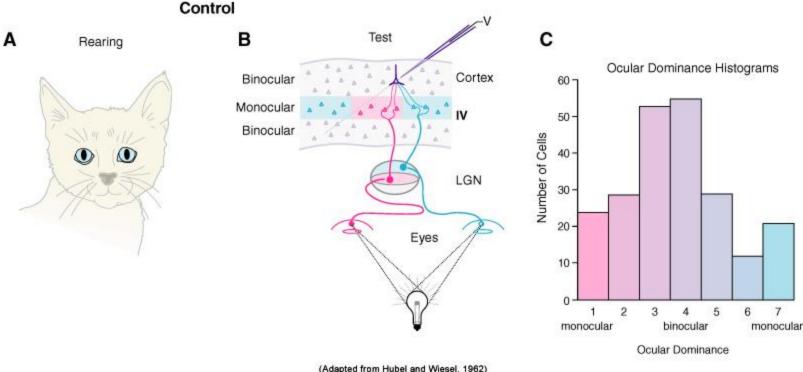

- Initially during development, the input from the two eyes overlaps in layer IV.
- Blocking activity prevented segregation of the ocular dominance columns.


- Changing the nature of the visual activity during the "critical period" of development changes the refinement:
 - Monocular lid suture resulted in the open eye having larger columns and the closed eye having smaller columns in layer IV of visual cortex.


normal

monocular deprivation

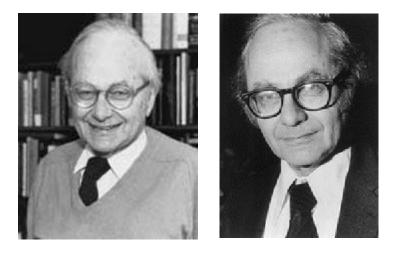
- Changing the nature of the visual activity during the "critical period" of development changes the refinement:
 - Induced strabismus (amblyopia) resulted in all layers being monocular.



Strabismus

А

(Adapted from Hubel and Wiesel, 1965)


- In adult cat, the projection from the lateral geniculate nucleus to layer IV of visual cortex is segregated into alternating stripes subserving the output from each eye (ocular dominance columns / stripes).
- Cells in the other cortical layers are binocular.

- Ocular dominance column experiments:
 - TTX into one eye during the critical period resulted in the projection for other eye becoming dominant.
 - TTX into one eye during critical period and suturing the other eye resulted in the sutured eye becoming dominant.
 - TTX into both eyes during critical period froze development.
 - TTX into both eyes and stimulating both optic nerves simultaneously resulted in no ocular dominance columns developing.
 - TTX into both eyes and stimulating both optic nerves in an alternating sequence resulted in ocular dominance columns developing.

- Presynaptic activity drives refinement.
- In competition between two axon populations for synaptic sites, the more active population keeps synapses, and the less active population loses synapses.
- Axons that fire together wire together.
- Before refinement, the predominant inputs to a target cell arise from neighboring cells. Neighboring cells will have the same activity. After refinement, all inputs to a target cell arise from neighboring cells.

• David Hubel & Torsten Wiesel received the Nobel Prize in Physiology & Medicine in 1981.

Have a fun, relaxing and safe Thanksgiving holiday!

Friends do not let friends (or anyone else) drink and drive!